Personalised Pre-Workout
- More energy, performance, pumps and gains
- Science-backed ingredients
- Industry-leading doses
- Highly customisable
Through many days (…and nights) spent poring over scientific research, we assessed countless ingredients, discarding any that didn’t meet our stringent standards for safety and efficacy. (And believe us, there were many.)
What remains is a curated collection of genuinely effective ingredients that can be combined in various ways to suit your unique needs and accelerate you towards your fitness goals.
Most pre-workouts contain a long list of exotic-sounding ingredients which are added in an attempt to convince you of the products’ efficacy. In reality, many of these ingredients have no supporting evidence, and those that do are often so under-dosed that their impact is negligible.
By comparison, every ingredient in our personalised pre-workouts is included for a reason, and at the full dose necessary to maximise exercise-related benefits.
Our packaging more than just looks good in your gym bag. It’s also designed to be as sustainable as possible, with almost every component* being either reusable, recyclable or compostable. We’ll even give you $1 off your next order if you reuse your scoop.
Beyond our packaging, we also use a carbon-neutral delivery service and donate to environmental charities as part of our Charitable Donations Policy.
* = all except the seal and moisture absorber
Creatine
[1] K. Sahlin and R. C. Harris, “The creatine kinase reaction: a simple reaction with functional complexity,” Amino Acids, vol. 40, no. 5, pp. 1363–1367, Mar. 2011, doi: 10.1007/s00726-011-0856-8.
[2] R. C. Harris, K. Söderlund, and E. Hultman, “Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation,” Clinical Science, vol. 83, no. 3, pp. 367–374, Sep. 1992, doi: 10.1042/cs0830367.
[3] M. D. Becque, J. D. Lochmann, and D. Melrose, “Effects of oral creatine supplementation on muscular strength and body composition,” Medicine and Science in Sports and Exercise, vol. 32, no. 3, pp. 654–658, Mar. 2000, doi: 10.1097/00005768-200003000-00016.
[4] L. P. Kilduff et al., “Effects of creatine on isometric bench-press performance in resistance-trained humans,” Medicine and Science in Sports and Exercise, vol. 34, no. 7, pp. 1176–1183, Jul. 2002, doi: 10.1097/00005768-200207000-00019.
[5] “Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance,” PubMed, Nov. 2003, doi: 10.1519/1533-4287(2003)017.
[6] S. Mills, D. G. Candow, S. C. Forbes, J. P. Neary, M. J. Ormsbee, and J. António, “Effects of Creatine Supplementation during Resistance Training Sessions in Physically Active Young Adults,” Nutrients, vol. 12, no. 6, p. 1880, Jun. 2020, doi: 10.3390/nu12061880.
[7] “Creatine monohydrate supplementation on body weight and percent body fat,” PubMed, Nov. 2003, doi: 10.1519/1533-4287(2003)017.
[8] S. C. Forbes, D. G. Candow, S. M. Ostojić, M. D. Roberts, and P. D. Chilibeck, “Meta-Analysis examining the importance of creatine ingestion strategies on lean tissue mass and strength in older adults,” Nutrients, vol. 13, no. 6, p. 1912, Jun. 2021, doi: 10.3390/nu13061912.
[9] J. S. Volek et al., “Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training,” Medicine and Science in Sports and Exercise, vol. 31, no. 8, pp. 1147–1156, Aug. 1999, doi: 10.1097/00005768-199908000-00011.
L-Citrulline
[1] Rougé, C., Robert, C., Robins, A., Bacquer, O. L., Volteau, C., De La Cochetière, M., & Darmaun, D. (2007). Manipulation of citrulline availability in humans. American Journal of Physiology-gastrointestinal and Liver Physiology, 293(5), G1061–G1067. https://doi.org/10.1152/ajpgi.00289.2007
[2] Ojeda, Á. H., De Hanna, A. D., & Barahona-Fuentes, G. (2019). The effect of supplementation with L-arginine and L-citrulline on physical performance: a systematic review. Nutricion Hospitalaria. https://doi.org/10.20960/nh.02478
[3] Ochiai, M., Hayashi, T., Murakami, M., Ina, K., Maeda, M., Watanabe, F., & Morishita, K. (2012). Short-term effects of l-citrulline supplementation on arterial stiffness in middle-aged men. International Journal of Cardiology, 155(2), 257–261. https://doi.org/10.1016/j.ijcard.2010.10.004
[4] Moinard, C., Nicolis, I., Neveux, N., Darquy, S., Bénazeth, S., & Cynober, L. (2007). Dose-ranging effects of citrulline administration on plasma amino acids and hormonal patterns in healthy subjects: the Citrudose pharmacokinetic study. British Journal of Nutrition, 99(4), 855–862. https://doi.org/10.1017/s0007114507841110
[5] Khalaf, D., Krüger, M., Wehland, M., Infanger, M., & Grimm, D. (2019). The effects of oral L-Arginine and L-Citrulline supplementation on blood pressure. Nutrients, 11(7), 1679. https://doi.org/10.3390/nu11071679
[6] Gough, L. A., Sparks, A. K., McNaughton, L. R., Higgins, M. F., Newbury, J. W., Trexler, E. T., Faghy, M. A., & Bridge, C. A. (2021). A critical review of citrulline malate supplementation and exercise performance. European Journal of Applied Physiology, 121(12), 3283–3295. https://doi.org/10.1007/s00421-021-04774-6
[7] Gonzalez, A. M., & Trexler, E. T. (2020). Effects of citrulline supplementation on exercise performance in humans: A review of the Current literature. Journal of Strength and Conditioning Research, 34(5), 1480–1495. https://doi.org/10.1519/jsc.0000000000003426
Caffeine
[1] Childs, E., & De Wit, H. (2006). Subjective, behavioral, and physiological effects of acute caffeine in light, nondependent caffeine users. Psychopharmacology, 185(4). https://doi.org/10.1007/s00213-006-0341-3
[2] Del Coso, J., Gonzalez-Millán, C., Abián-Vicén, J., & González, B. P. (2012). Dose response effects of a caffeine-containing energy drink on muscle performance: a repeated measures design. Journal of the International Society of Sports Nutrition, 9(1). https://doi.org/10.1186/1550-2783-9-21
[3] Desbrow, B., Biddulph, C., Devlin, B. L., Grant, G., Anoopkumar‐Dukie, S., & Leveritt, M. (2012). The effects of different doses of caffeine on endurance cycling time trial performance. Journal of Sports Sciences, 30(2), 115–120. https://doi.org/10.1080/02640414.2011.632431
[4] Duncan, M., Stanley, M., Parkhouse, N., Cook, K., & Smith, M. U. (2013). Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. European Journal of Sport Science, 13(4), 392–399. https://doi.org/10.1080/17461391.2011.635811
[5] Grgić, J., Mikulić, P., Schöenfeld, B. J., Bishop, D., & Pedišić, Ž. (2018). The Influence of caffeine supplementation on resistance Exercise: a review. Sports Medicine, 49(1), 17–30. https://doi.org/10.1007/s40279-018-0997-y
[6] Sampaio-Jorge, F., Morales, A. P., Pereira, R., Barth, T., & Ribeiro, B. G. (2021). Caffeine increases performance and leads to a cardioprotective effect during intense exercise in cyclists. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-03158-2
[7] Stadheim, H. K., Stensrud, T., Brage, S., & Jensen, J. (2021). Caffeine increases exercise performance, maximal oxygen uptake, and oxygen deficit in elite male endurance athletes. Medicine and Science in Sports and Exercise, 53(11), 2264–2273. https://doi.org/10.1249/mss.0000000000002704
L-Theanine
[1] Owen, G., Parnell, H., De Bruin, E. A., & Rycroft, J. A. (2008). The combined effects of L-theanine and caffeine on cognitive performance and mood. Nutritional Neuroscience, 11(4), 193–198. https://doi.org/10.1179/147683008×301513
[2] Haskell, C. F., Kennedy, D. O., Milne, A., Wesnes, K., & Scholey, A. (2008). The effects of l-theanine, caffeine and their combination on cognition and mood. Biological Psychology, 77(2), 113–122. https://doi.org/10.1016/j.biopsycho.2007.09.008
β-Alanine
[1] Saunders, B., Elliott‐Sale, K. J., Artioli, G. G., Swinton, P., Dolan, E., Roschel, H., Sale, C., & Gualano, B. (2016). β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. British Journal of Sports Medicine, 51(8), 658–669. https://doi.org/10.1136/bjsports-2016-096396
[2] Perim, P., Marticorena, F. M., Ribeiro, F., Barreto, G., Gobbi, N., Kerksick, C. M., Dolan, E., & Saunders, B. (2019). Can the Skeletal Muscle Carnosine Response to Beta-Alanine Supplementation Be Optimized? Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00135
[3] Hobson, R. M., Saunders, B., Ball, G., Harris, R. C., & Sale, C. (2012). Effects of β-alanine supplementation on exercise performance: a meta-analysis. Amino Acids, 43(1), 25–37. https://doi.org/10.1007/s00726-011-1200-z
[4] Derave, W., Ozdemir, M., Harris, R. C., Pottier, A., Reyngoudt, H., Koppo, K., Wise, J. A., & Achten, E. (2007). β-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. Journal of Applied Physiology, 103(5), 1736–1743. https://doi.org/10.1152/japplphysiol.00397.2007
[5] De Oliveira, E. P., Artioli, G. G., & Burini, R. C. (2023). Safety of beta-alanine supplementation in humans: a narrative review. Sport Sciences for Health, 19(3), 757–763. https://doi.org/10.1007/s11332-023-01052-0
Betaine
[1] Trepanowski, J. F., Farney, T. M., McCarthy, C. G., Schilling, B. K., Craig, S. A., & Bloomer, R. J. (2011). The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men. Journal of Strength and Conditioning Research, 25(12), 3461–3471. https://doi.org/10.1519/jsc.0b013e318217d48d
[2] Hoffman, J. R., Ratamess, N. A., Kang, J., Rashti, S. L., & Faigenbaum, A. D. (2009). Effect of betaine supplementation on power performance and fatigue. Journal of the International Society of Sports Nutrition, 6(1). https://doi.org/10.1186/1550-2783-6-7
[3] Arazi, H., Aboutalebi, S., Taati, B., Cholewa, J. M., & Candow, D. G. (2022). Effects of short-term betaine supplementation on muscle endurance and indices of endocrine function following acute high-intensity resistance exercise in young athletes. Journal of the International Society of Sports Nutrition, 19(1), 1–16. https://doi.org/10.1080/15502783.2022.2041988
α-GPC
[1] Changes in the interaction between CNS cholinergic and dopaminergic neurons induced by L-alpha-glycerylphosphorylcholine, a cholinomimetic drug. (1986, April 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/3709792/
[2] Bellar, D., LeBlanc, N. R., & Campbell, B. (2015). The effect of 6 days of alpha glycerylphosphorylcholine on isometric strength. Journal of the International Society of Sports Nutrition, 12(1). https://doi.org/10.1186/s12970-015-0103-x
[3] Marcus, L., Soileau, J., Judge, L. W., & Bellar, D. (2017). Evaluation of the effects of two doses of alpha glycerylphosphorylcholine on physical and psychomotor performance. Journal of the International Society of Sports Nutrition, 14(1). https://doi.org/10.1186/s12970-017-0196-5
[4] Parker, A. G., Byars, A., Purpura, M., & Jäger, R. (2015). The effects of alpha-glycerylphosphorylcholine, caffeine or placebo on markers of mood, cognitive function, power, speed, and agility. Journal of the International Society of Sports Nutrition, 12(sup1). https://doi.org/10.1186/1550-2783-12-s1-p41
[5] Ziegenfuss, T. N., Landis, J., & Hofheins, J. E. (2008). Acute supplementation with alpha-glycerylphosphorylcholine augments growth hormone response to, and peak force production during, resistance exercise. Journal of the International Society of Sports Nutrition, 5(sup1). https://doi.org/10.1186/1550-2783-5-s1-p15
Panax Ginseng Extract
[1] Ellis, J. M., & Reddy, P. R. (2002). Effects of Panax Ginseng on Quality of Life. Annals of Pharmacotherapy, 36(3), 375–379. https://doi.org/10.1345/aph.1a245
[2] Jovanovski, E., Jenkins, A. L., Dias, A. B., Peeva, V., Sievenpiper, J. L., Arnason, J. T., Rahelić, D., Josse, R. G., & Vuksan, V. (2010). Effects of Korean Red Ginseng (Panax ginseng C.A. Mayer) and Its Isolated Ginsenosides and Polysaccharides on Arterial Stiffness in Healthy Individuals. American Journal of Hypertension, 23(5), 469–472. https://doi.org/10.1038/ajh.2010.5
[3] Kennedy, D. O., Haskell, C. F., Wesnes, K., & Scholey, A. (2004). Improved cognitive performance in human volunteers following administration of guarana (Paullinia cupana) extract: comparison and interaction with Panax ginseng. Pharmacology, Biochemistry and Behavior, 79(3), 401–411. https://doi.org/10.1016/j.pbb.2004.07.014
[4] Reay, J. L., Kennedy, D. O., & Scholey, A. (2005). Single doses of Panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity. Journal of Psychopharmacology, 19(4), 357–365. https://doi.org/10.1177/0269881105053286
[5] Reay, J. L., Scholey, A., & Kennedy, D. O. (2010). Panax ginseng (G115) improves aspects of working memory performance and subjective ratings of calmness in healthy young adults. Human Psychopharmacology-clinical and Experimental, 25(6), 462–471. https://doi.org/10.1002/hup.1138
[6] Wei, Z., Chai, H., Lin, P. H., Lumsden, A. B., Yao, Q., & Chen, C. J. (2004). Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. PubMed, 10(8), RA187-92. https://pubmed.ncbi.nlm.nih.gov/15278009
Panax Ginseng Extract
[1] Pycnogenol® supplementation improves cognitive function, attention and mental performance in students. (2011, September 1). PubMed. https://pubmed.ncbi.nlm.nih.gov/22108481/
[2] Fitzpatrick, D., Bing, B., & Rohdewald, P. (1998). Endothelium-Dependent vascular effects of pycnogenol. Journal of Cardiovascular Pharmacology, 32(4), 509–515. https://doi.org/10.1097/00005344-199810000-00001
[3] Nishioka, K., Hidaka, T., Nakamura, S., Umemura, T., Jitsuiki, D., Soga, J., Goto, C., Chayama, K., Yoshizumi, M., & Higashi, Y. (2007). Pycnogenol, French Maritime pine bark extract, augments Endothelium-Dependent vasodilation in humans. Hypertension Research, 30(9), 775–780. https://doi.org/10.1291/hypres.30.775
Green Tea Extract
[1] Hursel, R., Viechtbauer, W., Dulloo, A. G., Tremblay, A., Tappy, L., Rumpler, W. V., & Westerterp-Plantenga, M. S. (2011). The effects of catechin rich teas and caffeine on energy expenditure and fat oxidation: a meta-analysis. Obesity Reviews, 12(7), e573–e581. https://doi.org/10.1111/j.1467-789x.2011.00862.x
[2] Musiał, C., Kuban–Jankowska, A., & Górska–Ponikowska, M. (2020). Beneficial properties of green tea catechins. International Journal of Molecular Sciences, 21(5), 1744. https://doi.org/10.3390/ijms21051744
[3] Nagata, T. (1986). Differences in caffeine, flavanols and amino acids contents in leaves of cultivated species and hybrids in the genus Camellia. Jarq-japan Agricultural Research Quarterly, 19(4), 276–280. https://www.jircas.go.jp/sites/default/files/publication/jarq/19-4-276-280_0.pdf
Electrolytes
[1] Lopez, R. M., Casa, D. J., Jensen, K. A., Stearns, R. L., DeMartini, J. K., Pagnotta, K. D., Roti, M. W., Armstrong, L. E., & Maresh, C. M. (2016). Comparison of two fluid replacement protocols during a 20-km trail running race in the heat. Journal of Strength and Conditioning Research, 30(9), 2609–2616. https://doi.org/10.1519/jsc.0000000000001359
[2] Lopez, R. (2012). Exercise and Hydration: Individualizing Fluid Replacement Guidelines. Strength and Conditioning Journal, 34(4), 2609–2616. https://doi.org/10.1519/JSC.0000000000001359
[3] Chinevere, T. D., Kenefick, R. W., Cheuvront, S. N., Lukaski, H. C., & Sawka, M. N. (2008). Effect of heat acclimation on sweat minerals. Medicine and Science in Sports and Exercise, 40(5), 886–891. https://doi.org/10.1249/mss.0b013e3181641c04
L-Carnitine
[1] Gnoni, A., Longo, S., Gnoni, G. V., & Giudetti, A. M. (2020). Carnitine in human muscle bioenergetics: Can carnitine supplementation improve physical exercise? Molecules, 25(1), 182. https://doi.org/10.3390/molecules25010182
[2] Kraemer, W. J., Spiering, B. A., Volek, J. S., Ratamess, N. A., Sharman, M. J., Rubin, M. R., French, D. N., Silvestre, R., Hatfield, D. L., Van Heest, J. L., Vingren, J. L., Judelson, D. A., Deschenes, M. R., & Maresh, C. M. (2006). Androgenic responses to resistance exercise. Medicine and Science in Sports and Exercise, 38(7), 1288–1296. https://doi.org/10.1249/01.mss.0000227314.85728.35